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Abstract—In this paper we present the review of the historical
Google PageRank algorithm, the first algorithm that was used
by the company to order the search engine results. We begin by
explaining the need of an algorithm that maximizes efficiency of
a search engine. The intuition behind the algorithm is explained.
A simple way of finding the rank of the web-pages is discussed
along with it’s pitfalls. Some ”patches” that are applied to this
simplified rank finding algorithm to deal with these shortcomings
are also introduced, and relevant intuitions are mentioned. The
practical working of the algorithm and complexity are discussed
through an example. Finally, we mention the relevance of the
algorithm in today’s world. their importance.

Index Terms—PageRank Algorithm, Power Method, Google,
Hypertextual Search Engine

I. INTRODUCTION

The internet of the 1990s was growing at a rapid pace.
Over 50 million websites had come into existence, and the old
yellowpages model of looking up websites could not survive
the growth rate. Since nearly anybody could make a webpage,
there was a huge demand for quality content. Users were
also looking for more human-friendly ways of finding top
webpages. The internet needed a search engine that could
reject spam, and let users find relevant information with only
a few clicks.

The PageRank algorithm [1], named after Larry Page, was
the combined effort of Page and Brin revolutionize the internet
search engine space. They proposed that the importance of
a webpage can recursively computed from the relative im-
portance of all the webpages linking to it. In this paper, we
describe how importance is quantified, and how the calculation
of the PageRank measure of a webpage (measure of citation
importance) is carried out.

The PageRank algorithm did help weeding out spam /
irrelevant content to a large extent. Over time, web users
eventually found ways to boost their website rankings. Google
currently employs more advanced techniques, both to deliver
user-targeted content, and to beat the ever-evolving spam
websites. Nevertheless, the PageRank algorithm is of great
historical significance. It inspired the technological revolution
that is Google Inc., and paved way for a more interactive
internet experience today.

II. ALGORITHM

A. Intuiton behind the PageRank measure

When searching the web for relevant information, a naive
word matching is not enough. The best websites, like the best

newspapers or magazines, must earn the right to show up at
the top of the search engine. A good metric for the importance
of a website is websites which reference it. If a page has well-
written , informative, and possibly even expert / peer-reviewed
content, many websites are likely to link to it. This makes it
a very relevant source of information. So, to find the ’rank’ of
the website, we must look its backlinks. 1

We can imagine that backlink for a given webpage A is
casting its vote for A, or endorsing it. If a page B links to A,
it essentially transfers all authority to A, implying that A can
elaborate on a range of topics much better than page B. Also,
the inherent value of a vote depends on the number of votes
cast. If page B linked (voted) for page A alone, the value of
the endorsement is much higher than if B had voted for 1000
other webpages.

The worldwide-web can be imagined as a massive directed
graph, where the webpages are nodes, and the edges are links
from one page to another. A page has high rank if the sum of
the ranks of its backlinks is high. Additionally, if the number
of forward links from a given backlink is high, its contribution
to the rank of the page is reduced.

In this way, we can use the idea of backlinks to recursively
compute the ’ranks’ of all websites. This gives a certain
degree of decentralization in the method of ranking webpages,
allowing the makers of good content to show up on top of the
search engine.

B. Mathematical definition of PageRank

Let us begin by defining a simplified version of PageRank
and let us denote this rank by R(u) where u ∈ U , the set of
all webpages. We define the PageRank of a webpage as

R(u) =
∑

v∈B(u)

R(v)

outdeg(v)

where outdeg(v) is the outdegree (i.e. the number of outgoing
links) of the page v. Let us define the hyperlink matrix H of
a web graph as,

Huv =

{
1/outdeg(v) if v ∈ B(u)
0 otherwise

We will also form a vector R whose components are the
simplified PageRank R(u). The condition for defining the

1Backlinks, are incoming links to a website or webpage from any node on
the worldwide web.



above PageRank can be expressed in the following product
form.

R = HR

Thus, we have recast the problem of finding the PageRank as
the problem of finding the stationary vector of the matrix (The
stationary vector is a position from which no further change
occurs. It will correspond to the eigenvector with eigenvalue
equal to 1). The challenge here is that H is usually very
very large in the real world (usually 50-100 billion rows and
columns). However H is a sparse matrix, i.e. most of the
entries in H are zero. In fact, studies show that web pages
have an average of about 10 links. This implies that H has an
average of 10 non-zero entries in every column.

We will choose a method known as the power method [4]
for finding the stationary vector R of the matrix H . The power
method works as follows. We begin by choosing a vector R0

as a candidate for R and then producing a sequence of vectors
Rk as:

Rk+1 = HRk

We terminate when Rk+1 is, to an acceptable level of preci-
sion, identical to Rk. This method is iterative and generally
slow to converge. But studies have shown that two iterations
are sufficient to give reasonably good approximations. Unfor-
tunately, this method does not guarantee convergence for all
possible hyperelink matrices. Therefore some modifications to
this simple PageRank must be made.

C. Patching the Algorithm

It can be seen that if there are dangling nodes, pages that
have no outlinks, then the power method will output the null
vector. Consider the example with the first node dangling (no
incoming links) with the following hyperlink matrix.

H =

(
0 0
1 0

)
If we start with R0 = (1, 0)t we end up with R = (0, 0)t. This
motivates the first patch of PageRank algorithm. We replace
the column corresponding to a dangling node with a column
of all 1/n with n being the number of nodes. This means that
every dangling node is linking to every single node in the web,
including itself. This prevents the power method from giving
the null vector. As a result, the disconnected graph becomes
fully-connected at the price of giving a very low weight to the
artificial links. Now the modified hyperlink matrix is

H =

(
0 1/2
1 1/2

)
The matrix H that we obtain is, in general, column stochastic,
i.e. its columns all sum up to one. From the theory of
stochastic matrices one knows that 1 is always an eigenvalue.
Furthermore, the convergence of power method to compute
Rk+1 = HRk to R depends on the second eigenvalue of H,
which we shall call λ2. If it is smaller than 1, then the power
method will converge. In addition, it is more rapid if |λ2| is
closer to zero, the convergence is faster.

Before dealing with the problem of convergence, there is
one other problem to solve. Consider two web pages that point
to each other but to no other page. And suppose there is some
web page which points to one of them. Then, during iteration,
this loop will accumulate rank but never distribute any rank
(since there are no outedges). The loop forms a sort of trap
which we call a rank sink.

To overcome this problem of rank sinks, we introduce a
rank source and this modified matrix is generally referred to
as the Google matrix. Let us define this matrix G as follows:

G = αH +
(1− α)
N

1

where α is the ’teleprtation’ parameter (See II-D), 1 is a
matrix with all entries set to 1 and N is the total number of
nodes. Now, the matrix G is irreducible because the matrix
1 is irreducible. Furthermore, it is also primitive since it
has all positive entries. We have thus obtained a matrix that
is both primitive and irreducible. This means that it has a
unique stationary vector that may be calculated using the
power method. Furthermore, the result does not depend on
the initial value R0 because the underlying graph is strongly
connected, which is equivalent to the irreducibility of G,. This
implies that the matrix has a unique eigenvector corresponding
to the eigenvalue λ = 1. This is the PageRank vector, and the
entry Ri tells us the probability that a random surfer will pass
through page i on his path. Hij tells us the probability that
a random surfer on page i, will jump to page j as his next
move.

The parameter α is free and needs to be tuned. It is known
that [3] that the second eigenvalue of G, λ2, is such that |λ2| <
α, so one would choose α as close to zero possible but in this
way the structure of the web, described by H would not be
taken into account at all. Brin and Page chose α = 0.85 to
optimize the calculations.

D. The ’random surfer’ argument

The definition of PageRank above can also be viewed as
random walks on graphs. The simplified version corresponds
to the standing probability distribution of a random walk on
the graph of the Web. Intuitively, this can be thought of as
modelling the behaviour of a ’random surfer’, who gets bored
after several clicks and teleports to a random page. It can be
understood as a Markov chain in which the states are pages,
and the transitions, which are all equally probable, are the
links between pages.

If a page has no links to other pages, it becomes a sink and
therefore terminates the random surfing process. If the random
surfer arrives at a sink page, he picks another URL at random
and continues surfing. We incorporate this adding the 1 matrix
to the H matrix to obtain the G matrix.

With this argument in perspective, the value α can be
thought of as some sort of damping factor. With a probability
of α, the surfer teleports out of this page to some random
webpage, thus justifying the multiplicative term α in the
formula for calculating G matrix.



This damping factor α ensures that you don’t accidentally
end up with an infinite series of PageRank passing an infinite
amount of PageRank (which translates to convergence of the
power method discussed earlier).

III. CONVERGENCE AND COMPLEXITY

Since the PageRank algorithm is now restated as
an eigenvalue problem, the convergence rate or the
complexity depends on the method used for solving
the Eigen value problem. As discussed, the power
iteration method is used for solving this problem. As
already said, convergence occurs when the second eigen
value (λ2) < 1 and faster when it is closer to zero.

In every iteration we have to do one matrix x vector
multiplication which can be done in O(n2) time, where n
is the length of the vector. But if the matrix is sparse with
on average k non zero elements on every row, the matrix x
vector multiplication can instead be done in O(kn) time. In
practice in many applications(especially PageRank) k does
not increase with n (such as for many real life networks),
this means we essentially have a linear time algorithm 0(n),
atleast if we know that λ2 is unlikely to be closer to 1 (which
is the dominant eigenvalue value in PageRank problem).

IV. AN EXAMPLE

We consider a small web consisting of three web-pages A,
B and C, where page A links to the pages B and C, page B
links to page C and page C links back to page A. Figure 1
shows the topology in detail.

Fig. 1. Example graph for PageRank computation

The value of α chosen generally is 0.85 but for
simplicity let us take α = 0.5. Though, the value
of the damping factor α has effects on PageRank,
the fundamental principles are not influenced.
Let R(u) be the PageRank associated with webpage u
where u ∈ {A,B,C}

R(A) = 0.5 + 0.5R(C)

R(B) = 0.5 + 0.5(R(A)/2)

R(C) = 0.5 + 0.5(R(A)/2 +R(B))

The above equation is modelled as an eigen value problem
and solved. Table 1 shows values at the end of each
iteration. We see that we get a good approximation of the
PageRank values after only a few iterations. According to
publications of Lawrence Page and Sergey Brin, about 100
odd iterations are required to get a good approximation

TABLE I
POWER ITERATION METHOD FOR PAGERANK COMPUTATION

Iteration PR(A) PR(B) PR(C)
0 1 1 1
1 1 0.75 1.125
2 1.0625 0.765625 1.1484375
3 1.07421875 0.76855469 1.15283203
4 1.07641602 0.76910400 1.15365601
5 1.07682800 0.76920700 1.15381050
6 1.07690525 0.76922631 1.15383947
7 1.07691973 0.76922993 1.15384490
8 1.07692245 0.76923061 1.15384592
9 1.07692296 0.76923074 1.15384611
10 1.07692305 0.76923076 1.15384615
11 1.07692307 0.76923077 1.15384615
12 1.07692308 0.76923077 1.15384615

of the PageRank values of the whole world wide web.

And, by means of the iterative calculations, the sum of
all PageRanks still converges to the total number of web
pages. So the average PageRank of web page is 1. The
minimum PageRank of a page is given by 1 − α. Therefore,
there is a maximum PageRank for a page which is given by
α ∗N +(1−α), where N is total number of web pages. This
maximum can theoretically occur, when all web pages solely
link to one page, and this page too gets linked to itself.

V. CONCLUSION

The PageRank Algorithm was immensely successful as a
search engine when it was first released. When incorporated
into the Google framework ( See [1] ), Page and Brin were
able to index over 24 million pages of the 1998 web and
return search query results in a few milliseconds. Moreover,
the endorsement model of PageRank gave highly relevant
results from established names at the top. At this point in
time, Google Inc. took over and began designing proprietary
algorithms for search engine ranking. Google has evolved
beyond the PageRank algorithm, but is very possible that a
form of PageRank still plays a large role in webpage ranking.

PageRank is also used in several other settings. Twitter
uses a modified version of PageRank to suggest followers. A
version of PageRank is considered as a replacement for Impact
Factor to measure reach of an academic document. From blog
impact measurement to protein analysis, PageRank has carved
a niche for itself in the history of the worlwide web.
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