
ERROR CONTROL CODING PROJECT, MAY-2014 1

Performance Evaluation of Convolutional Codes : A
MATLAB implementation

Surajkumar Harikumar (EE11B075), Manikandan S (EE11B125)

Abstract—In this paper, we analyse the performance of a rate
2/3 convolutional code of memory order 6, obtained by punc-
turing a rate 1/2. We use the soft-decision Viterbi algorithm to
decode messages transmitted over noisy channels. By controlling
the channel signal-to-noise ratio, we show the bit error rate
performance of the code, in comparison to the uncoded bit error
rate. We also use the Viterbi algorithm to evaluate the free-
distance of the code, the first few terms of the truncated weight
enumerating function. We use this to find a union bound on code
performance, and compute asymptotic and actual coding gain of
the rate 2/3 code.

Index Terms—Convolution Codes, MATLAB, Viterbi Algo-
rithm, Punctured code, Coding Gain, Performance of Code

I. INTRODUCTION

Convolutional codes are a specific class of error-correcting
codes with memory. They convert an m-bit input into an n-bit
output. Further more, the current information bits also decide
the codeword generated by subsequent information bits. Thus,
these codes have memory. More specifically, the convolution
code can be envisioned using a state diagram, where input bits
cause a transition from one state to another.

In this paper, we investigate the performance of a rate 2/3
convolutional code with memory order 6. We create the rate
2/3 code by puncturing a rate 1/2 code, that is by ignoring
certain output bits. The code specification is clearly mentioned
in subsequent sections.

We use the Viterbi algorithm to evaluate the performance of
the convolution code. We add additive-white-gaussian noise to
a long codeword, and find the bit-error rates for a given signal-
to noise ratio. This is compared with the uncoded wit-error
rates of the same code.

We also use a modified version of the algorithm to evaluate
the free distance dfree of the code, Adfree

, and a few terms
of the Weight enumerating function (WEF). We use this
to provide a union bound on the performance of the same
convolution code, and compare this to the actual performance.

II. CODE SPECIFICATION AND ENCODING

We are required to design a rate 2/3 convolution code of
memory order 6 by puncturing a rate 1/2 code. We obtained
the code specifications from Table 12.4 of Lin and Costello
textbook [2]. The optimum code of memory order v = 6
had g(0) = 155 and g(1) = 117. Since these were in
Octal-representation, we converted these to get the Binary
representation and thus the generator polynomial, given by

G(D) = [1 +D2 +D3 +D5 +D6,

1 +D +D2 +D3 +D6] (1)

Fig. 1. Systematic feed-forward encoder for the v = 6 rate 1/2 convolutional
code

We can construct a systematic encoder for this convolution
code. The encoder diagram for the same is given in Figure 1.
We can easily verify that this has memory order v = 6. This
encoder diagram specifies a rate 1/2 code, since it takes single
input and gives 2 outputs. To make this a rate 2/3 code, we can
puncture. Over 2 consecutive information bits, we require 3
codeword bits. So we just ignore one of the codeword bits out
of the 4 given by this systematic encoder to get a rate 2/3 code.
The table tells us that the optimum choice is to ignore v(1) in
every even codeword bit. The code snippet for obtaining the
generator polynomial is

1 g0 = de2bi(oct2dec(155));
2 g1 = de2bi(oct2dec(117));

We give a large input size message, and encode it using the
convolution code’s generator polynomial. For our example, we
used an N = 40, 000 bit message sequence, and encoded using
the 2 generator polynomials in 2. This was obtained by using
MATLAB’s conv function on a random sequence of size N .
We then take these 2 at a time to find the codeword bits that
go into the channel, captured in variable s. The modulation
scheme used was BPSK {0→ −1, 1→ 1}

1 ip = rand(1,N)>0.5;
2 cip1 = mod(conv(double(ip),[1 1 0 1 1 0 1])

,2);
3 cip2 = mod(conv(double(ip),[1 0 0 1 1 1 1])

,2);
4 cip = [cip1;cip2];
5 cip = cip(:).’;
6 s = 2*(cip)-1; % BPSK modulation

We then add Additive-White Gaussian Noise to this se-
quence s, using MATLAB’s inbuilt awgn function. We iterated
over Eb/N0 in the range of 2→ 6 dB.

ERROR CONTROL CODING PROJECT, MAY-2014 2

III. TRELLIS DIAGRAM AND THE VITERBI DECODER

To obtain the code performance, we send the noisy code-
word through the Viterbi Decoder. The first step here was
to obtain the trellis diagram. As a reference, we used MAT-
LAB’s inbuilt poly2trellis function. This returns all the states
and outputs leaving a particular state. We flipped this to
obtain a matrix of information containing the states entering
a particular node in the trellis diagram. Since the Viterbi
algorithm is best used with the previous state computation,
we generated this. Table I describes completely the transitions
from a previous state to current state, and the corresponding
input and output bits.

We use a Soft-Decision Viterbi Decoder. The Hard-
decision decoder classifies the received vector as zero or one
(after slicing) and uses these values to compute branch
metrics (using Hamming distance). On the other hand, the
soft decision decoder uses Euclidian distance as the branch
metric.. This means that for each received bit, we compute the
deviation from the corresponding branch bit, and find the Root-
of-sum-of-square over all bits. The branch metric computation
is described below.

d
(0)
i = r

(0)
i − ĉ

(0)
i

d
(1)
i = r

(1)
i − ĉ

(1)
i

Bri =

√
(d

(0)
i)2 + (d

(1)
i)2

(2)

The Viterbi decoding algorithm is used with the branch
metrics as computed above. There is a weight associated with
each node. At each stage, we compute all the branch metrics,
and update the node weight with the maximum of the total
path metric upto that node from all paths. A small snippet of
the code is shown here.

1 for m=1:32
2 for m=1:32
3 if (M_S(state_diagram(m,1)) + abs(2*

state_diagram(m,3)-1-cipSoft(2*k-1)) +
4 abs(2*state_diagram(m,4)-1-

cipSoft(2*k))
)<(M_S(state_diagram(m,2)) +

5 abs(2*state_diagram(m,5)-1-cipSoft
(2*k-1)) + abs(2*state_diagram
(m,6)-1-cipSoft(2*k)))

6 phi_S_temp(m,:)= phi_S(state_diagram(m,1)
,:);

7 phi_S_temp(m,k)=0;
8 M_S_temp(m)=M_S(state_diagram(m,1)) +
9 abs(2*state_diagram(m,3)-1-cipSoft

(2*k-1)) +
10 abs(2*state_diagram(m,4)-1-cipSoft

(2*k));
11 else
12 phi_S_temp(m,:)= phi_S(state_diagram(m

,2),:);
13 phi_S_temp(m,k)=0;
14 M_S_temp(m)=(M_S(state_diagram(m,2)) +

abs(2*state_diagram(m,5)-1-cipSoft
(2*k-1)) + abs(2*state_diagram(m,6)
-1-cipSoft(2*k)));

15 end
16 end end

TABLE I
TRELLIS STATE DIAGRAM DESCRIPTION

Current State Previous state Previous state Output for Output for
for input 0 for input 1 input 0 input 1

1 1 2 0 0 1 1
2 3 4 0 1 1 0
3 5 6 1 1 0 0
4 7 8 1 0 0 1
5 9 10 1 1 0 0
6 11 12 1 0 0 1
7 13 14 0 0 1 1
8 15 16 0 1 1 0
9 17 18 0 0 1 1
10 19 20 0 1 1 0
11 21 22 1 1 0 0
12 23 24 1 0 0 1
13 25 26 1 1 0 0
14 27 28 1 0 0 1
15 29 30 0 0 1 1
16 31 32 0 1 1 0
17 33 34 1 0 0 1
18 35 36 1 1 0 0
19 37 38 0 1 1 0
20 39 40 0 0 1 1
21 41 42 0 1 1 0
22 43 44 0 0 1 1
23 45 46 1 0 0 1
24 47 48 1 1 0 0
25 49 50 1 0 0 1
26 51 52 1 1 0 0
27 53 54 0 1 1 0
28 55 56 0 0 1 0
29 57 58 0 1 1 0
30 59 60 0 0 1 1
31 61 62 1 0 0 1
32 63 64 1 1 0 0
33 1 2 1 1 0 0
34 3 4 1 0 0 1
35 5 6 0 0 1 1
36 7 8 0 1 1 0
37 9 10 0 0 1 1
38 11 12 0 1 1 0
39 13 14 1 1 0 0
40 15 16 1 0 0 1
41 17 18 1 1 0 0
42 19 20 1 0 0 1
43 21 22 0 0 1 1
44 23 24 0 1 1 0
45 25 26 0 0 1 1
46 27 28 0 1 1 0
47 29 30 1 1 0 0
48 31 32 1 0 0 1
49 33 34 0 1 1 0
50 35 36 0 0 1 1
51 37 38 1 0 0 1
52 39 40 1 1 0 0
53 41 42 1 0 0 1
54 43 44 1 1 0 0
55 45 46 0 1 1 0
56 47 48 0 0 1 1
57 49 50 0 1 1 0
58 51 52 0 0 1 1
59 53 54 1 0 0 1
60 55 56 1 0 0 0
61 57 58 1 0 0 1
62 59 60 1 1 0 0
63 61 62 0 1 1 0
64 63 64 0 0 1 1

ERROR CONTROL CODING PROJECT, MAY-2014 3

Fig. 2. Comparing the BER code performance of the convolutional code and
the uncoded performance

We ran this Viterbi Decoder of a random message sequence
of length N = 40000, for various values of SNR. We looked
at the decoded sequence, and compared it with the input
codeword sequence (before noise was added). The number
of erroneous bits divided by the total number of bits gives us
the Bit Error Rate (BER) for the convolutional code. We
computed this for varying values of SNR. This was compared
against the uncoded BER, which was obtained using the
formula

Uncoded BER = Q

(√
SNR

2

)

=
1

2
erfc

(√
SNR

2

)

=
1

2
erfc

(√
Eb

N0

)
(3)

since SNR = 2 ∗ Eb

N0
(we are using BPSK modulation).

We plot this for varying values of Eb

N0
. The results are shown

in Figure 2. We see that after about 3.6 dB and a Bit error
rate of 10−2, the Soft viterbi decoder performs much better.
The coding gain, defined as the difference in Eb/N0 required
to achieve the same SNR, was found to be about 2.7 dB at a
BER of 10−4

IV. CALCULATION OF dfree AND Adfree

The Viterbi algorithm can be modified to calculate
the free distance (dfree) of a convolutional code. The
dfree of a convolutional code is defined as the minimum
Hamming weight of any non-zero codeword of that code.
In order to find that we can use the trellis diagram and
start from the all zero state.We will consider paths that
diverge from the zero state and merge back to the zero
state, with out intermediate passes through the zero state.
Since it is not possible to manually find such paths in

trellis, we modify our Viterbi algorithm to find such paths.

The idea is very simple. Instead of starting at the zeroth state,
we start with state 1 (we assign the path metric as 2 since
the transition from state zero to next state has two output
bits as 1). We define each branch metric to be weight of the
output for the transition through that branch. For example, if
there is a transition from state X at time instant t to state Y
at time instant t+1 and the output of this transition is 11 we
assign the branch metric associated with this branch to be 2.

Now comes the idea of Viterbi. Initially assign the weights
of all the states to be infinity. Set the state that is connected
to zero(here it is 32) to have weight 2. Now run the Viterbi
algorithm with branch metric as specified above and take the
path with minimum metric to the zero state. The path taken
to reach the zero state with minimum metric is the code with
the minimum hamming weight

1 Modifying Viterbi algorithm to determine dfree
2 Bdfree=0;
3 no_of_paths=1000;
4 path_metric=Inf(1,64);
5 path_metric(33)=2;
6 phi=zeros(64,no_of_paths);
7 for k=1:no_of_paths
8 path_metric_temp=Inf(1,64);
9 phi_temp=zeros(64,no_of_paths);

10 if(mod(k,2)==1) %odd iteration
11 for t=1:64
12 if(path_metric(t)+

state_diagram_weights(t,1)<
path_metric_temp(state_diagram
(t,1)+1))

13 path_metric_temp(state_diagram
(t,1)+1)=path_metric(t)+
state_diagram_weights(t,1)
;

14 phi_temp(state_diagram(t,1)
+1,:)=phi(t,:);

15 phi_temp(state_diagram(t,1)+1,
k)=state_diagram(t,3);

16 end
17 if(path_metric(t)+

state_diagram_weights(t,2)<
path_metric_temp(state_diagram
(t,2)+1))

18 path_metric_temp(state_diagram
(t,2)+1)=path_metric(t)+
state_diagram_weights(t,2)
;

19 phi_temp(state_diagram(t,2)
+1,:)=phi(t,:);

20 phi_temp(state_diagram(t,1)+1,
k)=state_diagram(t,4);

21 end
22 end
23 else
24 for t=1:64
25 if(path_metric(t)+

state_diagram_weights_even(t
,1)<path_metric_temp(
state_diagram(t,1)+1))

26 path_metric_temp(state_diagram
(t,1)+1)=path_metric(t)+
state_diagram_weights_even

ERROR CONTROL CODING PROJECT, MAY-2014 4

(t,1);
27 phi_temp(state_diagram(t,1)

+1,:)=phi(t,:);
28 phi_temp(state_diagram(t,1)+1,

k)=state_diagram(t,3);
29 end
30 if(path_metric(t)+

state_diagram_weights_even(t
,2)<path_metric_temp(
state_diagram(t,2)+1))

31 path_metric_temp(state_diagram
(t,2)+1)=path_metric(t)+
state_diagram_weights_even
(t,2);

32 phi_temp(state_diagram(t,2)
+1,:)=phi(t,:);

33 phi_temp(state_diagram(t,2)+1,
k)=state_diagram(t,4);

34 end
35 end
36

37 end
38 path_metric=path_metric_temp;
39 phi=phi_temp;
40 weight=[weight path_metric(1)];
41 path_metric(1)=Inf;
42 end
43 weight
44 disp(’Minumum weight’);
45 min(weight)

We find that dfree = 6 and the message associated to be
m(D) = D +D2 +D3. The value of Adfree = 1

Bdfree = 3Adfree = 3

V. FINDING THE FIRST TWO TERMS OF THE BWER

In the previous section we found out the value of dfree to
be 6 and the value of the Adfree to be 1. The weight of the
one input message vector that gives codeword of minimum
hamming weight is 3 (Bdfree). We find that there exists
codewords of hamming weight 7(which is dfree + 1). We
can find out the value of this Bd (i.e the weights of input
message vector giving a codeword of hamming weight 7).

Pbiterror ≈ Bdfreee−RdfreeEb/N0 +Bde−RdEb/N0

The above formula works for small values of SNR and
the value of Bd was found out to be 87 (approximately).
Another approach would be to determine all the codewords
with weight 7 and found out the input message vector associ-
ated with that codeword. The weight of all such codeword
multiplied by the Ad corresponding to the codeword with
weight 7 gives the value of Bd to be 90.

VI. UNION BOUND AND CODING GAIN

The Viterbi decoder gives a very accurate estimate of
the performance of the code. However, it takes hours to
run and days to get appreciable results during simulation.
Thus, we have 2 rough measures on the performance of the
convolutional code, Bounds, and Coding Gain.

We used 2 bounds for demonstration, a simpler bound, and a
tighter one. The simpler bound we chose was the Event-Error
Probability, given by

Pb(E) < PE
b (E) = Bdfree

2dfree/2e−(Rdfree/2)(Eb/N0) (4)

Since we know Bdfree
= 3 and dfree = 6, we can easily

evaluate this bound for a rate R = 2/3 code (which this is at
th construction level). We easily see from Figure X that is is
a fairly loose upper bound, but does track the Convolutional
code performance.

The better bound is the Union Bound, given by

Pb(E) < PU
b (E) =

∞∑
d=dfree

Bde
− dREb

N0 (5)

The most accurate bound would be to sum over all terms in
the Bit-Weight-Enumerating-Function. But since we have only
the first 2 terms, we create a new bound

PTr
b (E) = Bdfree

e−
dfreeREb

N0 +Bdfree+1e
−

(dfree+1)REb
N0 (6)

We plot 4 and 6 in Figure 3. We see that the Truncated Union
Bound tracks the Convolution code very well, to about 1 order
of error magnitude difference.

Fig. 3. Comparing the BER code performance of the convolutional code and
the uncoded performance

The other measure of code performance is Coding Gain.
The asymptotic coding gain of a soft-decision covolutional
code is given by

γ = 10 log10(Rdfree) dB = 6 dB (7)

Using R = 2/3 and dfree = 6, we get the Asymptotic coding
gain as 6 , while our actual measured coding gain at BER =
10−4 is around 3 dB. At larger values of BER, our coding gain
will increase. This concludes the treatment of convolutional
code performance.

REFERENCES

[1] Todd. K. Moon, Error Correction Coding.
[2] Shu Lin, Daniel J. Costello, Error Control Coding-Fundamentals and

Applications, 2ed
[3] http://en.wikipedia.org/

d

